212103

M.Sc. (Semester-I) Examination, December 2021 MATHEMATICS

Paper - V (Optional -I)

(Advanced Discrete Mathematics-I)

Time Allowed: 3 hours

Maximum Marks: 40

Regular/Private: 40/50

नोट : स्वाध्यायी परीक्षार्थियों के लिए पूर्णांक 50 अंक होंगे, खण्ड 'अ'- 5, खण्ड 'ब'-15 एवं खण्ड 'स'-30 अंकों का होगा।

- Note: (1) All sections are compulsory. Marks are indicated against each section.
 - (2) Symbols have their useual meanings.

Section-A (Objective Type Questions)

 $5\times1=5$

- 1. Choose the correct option:
 - (i) A subgroup <H, *> of <G, *> is called normal subgroup if:
 - (a) $Ha \le aH$
- (b) Ha = aH
- (c) $Ha \ge aH$
- (d) $Ha \neq aH$

- (ii) Let (P, \le) be a partially ordered set, an element $m \in p$ is said to be a maximal element if:
- (a) $m \le x \Rightarrow m = x$ (b) $m \ge x \Rightarrow m = x$
- c) $m \le x \Rightarrow m \ne x$ (d) $m \ge x \Rightarrow m \ne x$
- (iii) A Boolean algebra can not have:
- (a) Two elements (b) Four elements
- (c) Three elements (d) Five elements
- (iv) A vertex of degree 1 is:
- a) A pendant vertex
- (b) An isolated vertex
- (c) A vertex having loop also on it
- (d) None of these
- (v) Every cut-set in connected graph G contains atleast of every spanning tree of G:
- (a) One
- (b) Two
- (c) Three
- (d) Four

Section-B

(Short Answer Type Questions) 5×2=10

Define semigroup with example.

2.

2

Define Homomorphism of Semigroup and monoid.

3. Define sublattice with example.

Define the following -

(i) Bounded lattice (ii) Isomorphic lattice

4. Define Boolean algebra with example.

Q

Define the following

- (i) Boolean Function (ii) Minimal Boolean function
- 5. Define the following:
- (i) Degree of a vertex (ii) Isolated vertex
- (iii) Pendant vertex

OR

Define Tree with example.

6. Define Biportite graph with example.

OR

Define Spanning Tree with example.

Section-C

(Long Answer Type Questions) 5

Let < M,*,e > and <T, \triangle ,e') be two monoids with identities e and e' if f is an onto mapping from M to T i.e.

 $f: M \to T$ is an isomorphism then prove that

f(e) = e'

R

Let g be a homomorphism of < G, *> on to $< G', \Delta>$ with kernal K. Then < G/K, > is isomorphic to $< G', \Delta>$

8. Show that the dual of a lattice is a lattice

92

Show that every chain is a distributive lattice.

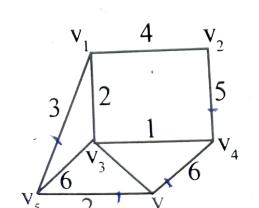
21210

- If a and b are arbitrary elements of a Boolean algebra 9. B then show that:
 - (i) (a+b)' = a'b' (ii) (ab)' = a'+b'**OR**

Define the following:

- Switching circuit (ii) Parallel circuit (i)
- (iii) Series circuit
- The sum of the degree of all vertices in a graph is equal to twice the number of edges. 10.

OR


The maximum number of edges in a simple

graph with *n* vertices is
$$\frac{n(n-1)}{2}$$

Prove that Every connected graph has at least one 11. spanning tree.

OR

State the Kruskal's algorithm. Find the minimal spanning tree for the following graph -

